Stability of GAMMA-NAUGHT and THE PALSAR based FOREST MRV SYSTEM

M. Shimada, M. Watanabe, T. Motooka, T. Shiraishi, R. Thapa

JAXA, EORC

GEOS-AP Forest Session, April 3 2012

Contents

- 1. Introduction
- 2. PALSAR Global Mosaic
- 3. Gamma-naught stability
- 4. MRV system development
 - gamma-naught change
 - LULUCF
 - FNF
 - Effectiveness of slope/off-slope
 - Ground Truth Data Collection
 - Global Mangrove Map
- 5. Conclusion

PALSAR 10m Global Forest/Non-Forest Map 2009

Deforestation monitoring at Rondonia, Brazil, using JERS-1 SAR and ALOS/PALSAR

5. MRV-system development

Time series SAR

Basic Information Ortho, Slope Mosaic, Multi season Processing

MRV Development

- Generate the Horizon products defined in the GEO-FCT
- Algorithm development as JAXA REDD+ project
- Algorithm development for monitoring the forest (LULUCF, FNF, LULUCF-C, FNF-C)
- Estimate the biomass with accuracy assessment
- Development of the forest area decrease area estimation
- Validation in JFY2012 (April 2012-March 2013)

4. Stability of PALSAR

Temporal variation of the SAR data was evaluated.16 of Amazon PALSAR 4 look data were used.

Ortho, Slope corrected data were evaluated.

Average: 0.01dB, (0.185dB): High stability

statistics.doc 3:31:20 PM 11.8.10 Mean difference and the standard deviation (dB) 2 Mean = 0.0098 dB = 0.1848 dB 1.5 0.5 0

5.1 Change detection using gamma-naught(GC)

- Riau
- 2007–2010 data
- HH, HV
- AVNIR-2 data were used
- WWF data were used.

Temporal change of gammanaught(2007-2009)

Three colors Green: No change

Blue: decrease

Red: Increase

Larger blue color shows forest.

Using gamma-naught changes for deforestation monitoring

2009 mosaic - 2008 mosaic Riau province, Indonesia

Annual decrease of gamma naught HV ... $\Delta \gamma^0 < -2 \text{ dB}$

Example-1)
Acacia
concession

2007-2008 2008-2009 2009-2010

AVNIR-2 2009/10/08

AVNIR-2 2008/07/05

AVNIR-2 2010/10/11

Example-2) Tesso Niro natural forest, Riau, Indonesia

Deforestation map of central Sumatra derived by PALSAR 25-m mosaics

Gamma-naught change : allows the deforestation monitoring and forest changes at the known classes

1. Gamma-naught variation and the forest decrease

差分画像(2010年-2009年)

2. Gamma-naught variation and the forest decrease

Comparison study for: LULUCF

- Area: Riau
- Method: Subspace (SS), Decision Tree (DT), Nearest Neighbor (NN), Support Vector Machine(SVM)
- Output, LULUCF & FNF
- Accuracy:SS>DT>NN>SVM at FNF,SS showed the best of 88%.
 - Accuracy Comparison: Stratified random sampling approach

Land cover class	%Landscape	CI ±3
Natural forest	30.19	322
Natural mangrove forest	1.79	19
Natural re-growth	12.17	130
Acacia	5.09	54
Oil Palm	13.53	144
Rubber	9.53	102
Coconut	3.95	42
Open area	6.94	74
Other	10.98	117
Water	5.83	62
Total	100.00	1067

LULUCF algorithm comparison(Number is accuracy in %,LULUCF in 9 classes, FNF in 2 classes Blue points correct, red points in incorrectは)

Slope correct effect and advantage of Gamma-naught Visualization

勾配補正有り

LULUCF(FNF)

FNF

Without slope correction

60%

ectionあり)	(HH + HV, Slope Correctionなし)

勾配補正なし	,		Forest	Mangrove	ReGrowth	Acacia	Oil Palm	Rubber	Coconut	OpenArea	Others	
力はいます。										Section 15		
	Slope Correction	Producer'S Accuracy [%]	64.03%	33.57%	0.00%	26.66%	55.39%	20.75%	43.17%	17.03%	29.79%	NA.
	あり	User'S Accuracy [%]	86.43%	31.81%	0.00%	12.84%	56.92%	4.03%	69.62%	45.61%	19.52%	,,
	Slope Correction	Producer'S Accuracy [%]	51.49%	27.24%	0.00%	20.14%	52.22%	14.67%	35.97%	14.89%	14.19%	
	なし	User'S Accuracy [%]	60.99%	28.00%	0.00%	13.29%	54.49%	2.18%	73.51%	48.03%	23.20%	
	Slone Correc	tionされて	1.151.1=	データでけ	- 特に抽る	ドの記	ナポタロ	川丘州	帯におけ	よる森林		

分類の精度が大きく低下した。

Comparison of slope-correction and without slope correction:

Riau

R:2007, G: 2009:B:2010

5.3 FNF

- Target area: Riau
- Method: Thresholding using eCOG (-11.5 dB for g⁰_{HV})
- Output, FNF

- Other: Global FNF
- Comparison with DCP

Accuracy evaluation of FNF2007-2009 using

PALSAR FNF 2008 83.02%, 736points

PALSAR FNF 2009 82.68%, 635points

•: Forest, •: Non-Forest, •: Water

•: Correct, •: Incorrect

PALSAR FNF 2010 83.93%, 280points

biomass estimation(accuracy)(Tier-2~3)

MRV Status

Two methods are being developed for the operations, SS for LULUCF, and Gamma-naught change detection estimating the forest area change in Indonesia ad Brazil.

PALSAR basic processing: done.

Ground plotting 48 points in Riau

Lidar data in Riau

Global Mangrove Map

The overview of ALOS-2

ALOS-2 satellite parameters

Orbit type : Sun-synchronous

■ Launch : 2013

Altitude : 628km +/- 500m(for reference orbit)

Revisit time: 14days

LSDN : 12:00 +/- 15min

PALSAR-2 (Mission Sensor)

- L-band Synthetic Aperture Radar
- Active Phased Array Antenna type

two dimensions scan (range and azimuth)

- Antenna size : 3m(El) x 10m(Az)
- Bandwidth: 14 to 84MHz
- Peak transmit Power: 5100W
- Observation swath: 25km to 490km
- Resolution : Range 3m to 100m Azimuth 1m to 100m

7. Summary

- Slope corrected gamma-naught of PALSAR and JERS-1 SAR are effective parameter to express the deforestation status. Time series of the gammanaught change will be the useful method for detecting the forest decrease.
- Development of the LULUCF is underway and aggregated FNF using the subspace method reaches to 88%.
- We will continue to develop the biomass quantity (and carbon) change combining the ground truth data and lidar data.

Acknowledgements

- Great Thanks to RESTEC researchers
- T. Yamanokuchi, T. Itoh, O. Isoguchi, and H. Okumura

5.2 LULUCF Classification development

- Area: Riau
- Method: Several
- SVM, eCOG MDM, eCOG Bayesian, Sub-Space(SS)
- Output, LULUCF & FNF

 SS>SVM>eCOG at FNF,SS showed the best accuracy of 88%.